

Chapter I: The Liouville equation

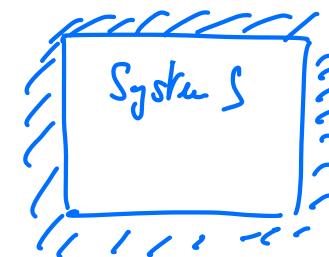
①

1) Brief recap of equilibrium stat mech

Microcanonical ensemble

Isolated system

Configurations $\{q\}$ & Hamiltonian $H(q)$



Boltzmann hypothesis: If the dynamics is sufficiently chaotic, then, after a long time, all configurations with the same energy are equally likely

$$\text{Energy } H_0 \text{ then } p(q) = 0 \text{ if } H(q) \neq H_0 \\ = \frac{1}{\mathcal{Z}(H_0)} \text{ otherwise}$$

Here $\mathcal{Z}(H_0)$ is a normalization constant or partition function of energy H_0

$$\text{Microcanonical entropy} \quad S = k_B \ln \mathcal{Z}(H_0)$$

$$\text{Microcanonical temperature} \quad \frac{1}{T} = \frac{\partial S(H_0)}{\partial H_0}$$

Canonical ensemble

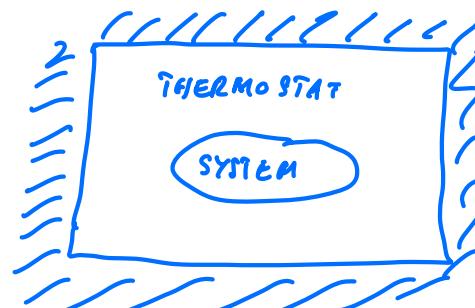
System & Thermostat can exchange energy, but they are isolated from the rest of the world.

System + Thermostat are in the microcanonical ensemble \Rightarrow Boltzmann weight for the system

$$P(q) = \frac{1}{Z} e^{-\beta H(q)}; \quad \beta = \frac{1}{k_B T_{th}} \quad \text{with } T_{th} \text{ the microcanonical temperature of the thermostat}$$

and $Z = \sum_q e^{-\beta H(q)}$ a normalization constant called the partition function

Limitations:
→ rather abstract setting
→ says nothing on the dynamics of the system

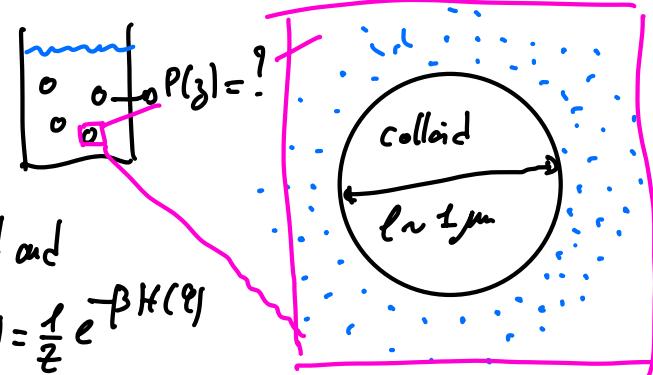


Goal: Do better.

2/ The Langevin equation

2

Idea: We want to start from a full model for the bath & the colloid & derive a closed effective dynamics for the colloid and show that, at long time, it converges to $P(q) = \frac{1}{Z} e^{-\beta H(q)}$



liquid molecule $\sim 10^{-10} \text{ m} \Rightarrow \text{area} \sim 10^{-20} \text{ m}^2$
 colloid $\sim 10^{-6} \text{ m} \Rightarrow \text{area} \sim 10^{-12} \text{ m}^2$ } $\Theta(10^8)$ liquid molecule in contact with the colloid

\Rightarrow lots of random collisions \Rightarrow want to build a statistical treatment of these collisions.

Framework: For simplicity, we work in $d=1$ space dimension.

Colloid: mass M , position X , momentum P .

Fluid molecule: mass $m=1 \ll M$, positions $\{q_i\}$, momenta $\{p_i\}$.

$$\text{Hamiltonian: } H = \frac{P^2}{2M} + V(X) + \sum_i V_{FC}(x - q_i) + \sum_i \frac{p_i^2}{2} + \sum_{i < j} V_{FF}(q_i - q_j)$$

↓
 e.g. gravity $\equiv H_{FC}$ models the fluid-colloid interaction
 Hamiltonian of the fluid in the absence of the colloid

$$\text{Equations of motion: } M\dot{X} = P ; \dot{p} = -\frac{\partial H}{\partial x} = -V'(x) - \sum_i V_{FC}'(x - q_i) + f_{FC}$$

$$\dot{q}_i = p_i ; \dot{p}_i = V_{FC}'(x - q_i) - \sum_{j \neq i} V_{FF}'(q_i - q_j)$$

Goal: characterize f_{FC} starting from the eq. of motion

Problem: ① Impossible to solve the eq. of motion in general

② This level of description contains too much information \Rightarrow need to eliminate $\{q_i, p_i\}$

Idea: Eliminate $\{q_i, p_i\}$ to get a self-consistent dynamics for x & p .

Let's try to guess the result

* If the colloid was at rest for $t' \leq t$, $p = 0$.

By symmetry, there cannot be a non-zero average force on the colloid

$-\langle f_{FC}(t) \rangle = \langle \sum_i V_{FC}'(x(\epsilon_i) - q_i) \rangle = 0$; where $\langle \dots \rangle$ represents an average over repeated experiments or samples.

* Suppose now that at time t , the colloid starts moving so that $x(t+\delta t) - x(t) \approx \frac{p(t)}{m} \delta t \neq 0$

$$\text{then } \langle \sum_i V_{FC}'(x(t+\delta t) - q_i) \rangle = \langle \sum_i V_{FC}'(x(t) - q_i + \delta t \frac{p(t)}{m}) \rangle$$

$$\approx \langle \sum_i V_{FC}'(x(t) - q_i) + \delta t \frac{p(t)}{m} V_{FC}''(x(t) - q_i) \rangle$$

$$\approx \underbrace{\langle \sum_i V_{FC}'(x(t) - q_i) \rangle}_{=0} + \underbrace{\delta t \frac{p(t)}{m}}_{p(t) = \langle p(t) \rangle \text{ is the same in all experiments.}} \langle \sum_i V_{FC}''(x(t) - q_i) \rangle$$

$$\langle f_{FC}(t+\delta t) \rangle = -p(t) \frac{\delta t}{m} \langle \sum_i V_{FC}''(x(t) - q_i) \rangle$$

The average force exerted by the fluid is $\propto p(t) \Rightarrow$ friction force / damping !

Total force should be the average force + fluctuations around it

Expected result $\dot{p} = -V'(x) - \gamma p + \text{fluctuations} \Rightarrow$ let's show that this is the right intuition & derive this more rigorously.

Problem This result is very difficult to establish for a general case, and we will thus make some approximations

① V_{FC} generic \Rightarrow too complicated \Rightarrow use harmonic oscillators instead

② Since $n \gg 1$, the motion of the colloid is much slower than that of the fluid \Rightarrow adiabatic approximation. We consider that, at an arbitrary time $t=0$, the fluid is equilibrated:

$$P(\{q_i, p_i\}, t=0) = \frac{1}{Z} \exp \left[-\beta H_{FC}(x(0), \{q_i, p_i\}) - \beta H_{FF}(\{q_i, p_i\}) \right]$$

\Rightarrow We are going to show that **equilibrium is contagious**, i.e. that a bath in the canonical ensemble endows an immersed colloid with a dynamics that drives it to equilibrium.

2.1) An exactly solvable case

Inspired by R. Zwanzig, "Nonequilibrium statistical mechanics", that is itself inspired by a series of articles:

- Feynman, Vernon, Annals of Physics 24: 118-173 (1963)
- Ford, Kac, Mazur, J. Math. Phys. 6, 504 (1965)
- Caldeira, Leggett, Phys. Rev. Lett. 46: 211-214 (1981)

Consider: $H: \frac{p^2}{2m} + V(x) + \sum_i \left[\frac{p_i^2}{2} + \frac{\omega_i^2}{2} (q_i - x)^2 \right]$

2.1.1) Self consistent dynamics for x & p

Equations of motion $\dot{q}_i = p_i \quad (1)$ $\dot{p}_i = -\omega_i^2 (q_i - x) \quad (2)$

$$m \ddot{x} = p \quad (3) \quad \dot{p} = -V'(x) - \sum_i \omega_i^2 (x - q_i) \quad (4)$$

→ Solve (1) & (2) in terms of their source $x(t)$ & inject the result into Eq (4)

$$(1) \& (2) \Rightarrow \ddot{q}_i = -\omega_i^2 q_i + \omega_i^2 x$$

homogeneous solution: $q_i''(t) = A_i \cos(\omega_i t) + B_i \sin(\omega_i t)$

general solution: $q_i(t) = q_i''(t) + q_i^0(t)$ with $q_i^0(t)$ a particular solution of (1+2)

Look for a particular solution of the form $q_i^0(t) = \int_0^t ds f(t-s) x(s)$ when f is a Green's function to be determined.

$$\dot{q}_i^0(t) = f(0) x(t) + \int_0^t ds f'(t-s) x(s)$$

$$\ddot{q}_i^0(t) = f(0) x''(t) + f'(0) x(t) + \int_0^t ds f''(t-s) x(s)$$

we need $\ddot{q}_i^0(t) + \omega_i^2 q_i = \omega_i^2 x$

$$\Leftrightarrow f(0) x''(t) + f'(0) x(t) + \int_0^t ds \left[f''(t-s) + \omega_i^2 f(t-s) \right] x(s) = \omega_i^2 x(t)$$

Comparing left hand side & right hand side, we see that we need

$$f(0) = 0$$

$$f'(0) = \omega_i^2$$

$$f''(u) + \omega_i^2 f(u) = 0 \Rightarrow f(u) = \tilde{A} \cos(\omega_i u) + \tilde{B} \sin(\omega_i u) \text{ with } \tilde{A} = 0 \text{ & } \tilde{B} = \omega_i$$

$$\Rightarrow q_i^P(t) = \int_0^t ds \omega_i \sin[\omega_i(t-s)] x(s)$$

(5)

$$\text{Since } q_i^P(0) = \dot{q}_i^P(0) = 0 \Rightarrow q_i^P(0) = q_i^{''}(0) = A_i \quad \& \quad q_i^P(0) = \dot{q}_i^{''}(0) = B_i \omega_i = p_i(0)$$

$$\text{All in all, } \boxed{q_i(t) = q_i(0) \cos[\omega_i t] + \frac{p_i(0)}{\omega_i} \sin[\omega_i t] + \omega_i \int_0^t ds \sin[\omega_i(t-s)] x(s)}$$

This yields $q_i(t)$ in terms of $q_i(0)$, $p_i(0)$, ω_i & the colloid's trajectory $x(s)$, $s \leq t$.

We now want to go back to the equations (3) & (4) for the colloid

Let's work on $x - q_i$ to see that $p(t)$ is indeed present in the force exerted by the fluid

$$\begin{aligned} x(t) - q_i(t) &= x(t) - \int_0^t ds \omega_i \sin[\omega_i(t-s)] x(s) - q_i(0) \cos[\omega_i t] - \frac{p_i(0)}{\omega_i} \sin[\omega_i t] \\ &= x(t) - \left[\cos[\omega_i(t-s)] x(s) \right]_0^t + \int_0^t ds \cos[\omega_i(t-s)] \frac{p(s)}{M} - q_i(0) \cos[\omega_i t] - \frac{p_i(0)}{\omega_i} \sin[\omega_i t] \\ &= \int_0^t ds \cos[\omega_i(t-s)] \frac{p(s)}{M} + [x(0) - q_i(0)] \cos[\omega_i t] - \frac{p_i(0)}{\omega_i} \sin[\omega_i t] \end{aligned}$$

Now, we can close our system of equations

$$\dot{p} = -V(x) - \int_0^t ds \frac{p(s)}{M} \sum_i \omega_i^2 \cos[\omega_i(t-s)] + \sum_i \omega_i p_i(0) \sin[\omega_i t] + \omega_i^2 [q_i(0) - x(0)] \cos[\omega_i t]$$

$$\Leftrightarrow \boxed{\dot{p} = -V(x) - \int_0^t ds \dot{x}(s) K(t-s) + S(t)} \quad (*)$$

where $K(u)$ is a "friction kernel" that tells us how a displacement at time $s < t$ leads to a non-zero force on the colloid at time $t > s$.

$K(u) = \sum_i \omega_i^2 \cos[\omega_i u]$ is entirely determined by the constants $\omega_i \Rightarrow$ fixed once the system is defined

$\Rightarrow S(t) = \sum_i \{ \omega_i p_i(0) \sin(\omega_i t) + \omega_i^2 [q_i(0) - x(0)] \cos(\omega_i t) \}$ will represent the fluctuating part of the force, that depends on the positions & momenta of the fluid at $t=0$.

2.1.2) Fluctuation and friction

The fluctuations

If we assume that, at $t=0$, the fluid is equilibrated, then we can characterize the fluctuations of $\xi(t)$.

For conciseness, we write $q_i(0) = q_i^0$ & $p_i(0) = p_i^0$, and assume

$$P(\{q_i^0, p_i^0\}) = \frac{1}{Z} \exp \left\{ -\beta \sum_i \left[\frac{(p_i^0)^2}{2} + \frac{\omega_i^2}{2} (q_i^0 - x(0))^2 \right] \right\} = \prod_i P_p(p_i^0) \times P_q(q_i^0)$$

$\Rightarrow p_i^0$ & $q_i^0 - x(0)$ are independent Gaussian random variables (RV).

* $\xi(t)$ is thus a linear combination of Gaussian RV \Rightarrow it is also a Gaussian RV.

The characteristic function of a Gaussian is a Gaussian

$$\text{Let } \bar{z} \text{ be a GRV; } P(\bar{z}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(\bar{z} - \bar{\delta})^2}{2\sigma^2} \right]$$

$$\begin{aligned} \langle e^{i\lambda\bar{z}} \rangle &= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{+\infty} d\bar{z} e^{i\lambda\bar{z} - \frac{(\bar{z} - \bar{\delta})^2}{2\sigma^2}} = \frac{1}{\sqrt{2\pi\sigma^2}} \sqrt{2\pi\sigma^2} e^{i\lambda\bar{\delta} - \frac{\lambda^2\sigma^2}{2}} \\ &= e^{i\lambda\bar{\delta} - \frac{\lambda^2\sigma^2}{2}} \end{aligned}$$

Conversely, if $\langle e^{i\lambda\bar{z}} \rangle = e^{i\lambda\bar{\delta} - \frac{\lambda^2\sigma^2}{2}}$, the inversion theorem tells us that \bar{z} is a GRV.

A linear combination of GRVs is a GRV

$$\text{Let } p(q_i) = \frac{1}{\sqrt{2\pi\sigma_i^2}} e^{-\frac{1}{2} \frac{(q_i - q_i^0)^2}{\sigma_i^2}} \text{ and } x = \sum_i \alpha_i q_i$$

$$\begin{aligned}
 \langle e^{i\lambda x} \rangle &= \langle e^{i\lambda \sum_i \alpha_i q_i} \rangle = \hat{e}^{\lambda} \langle e^{i\lambda \sum_i \alpha_i q_i} \rangle \\
 &= \hat{e}^{\lambda} e^{i\lambda \sum_i \alpha_i q_i - \frac{\lambda^2 \sum_i \alpha_i^2 \bar{p}_i^2}{2}} = e^{i\lambda \sum_i \alpha_i q_i - \frac{\lambda^2 \sum_i \alpha_i^2 \bar{p}_i^2}{2}} \\
 \Rightarrow p(x) &= \frac{1}{\sqrt{2\pi\bar{p}^2}} e^{-\frac{(x-\bar{x})^2}{2\bar{p}^2}}
 \end{aligned}$$

Comment: a Gaussian distribution like $p(x)$ is entirely characterized by its two first cumulants $\langle x \rangle$ and $\langle x^2 \rangle_c = \langle x^2 \rangle - \langle x \rangle^2$.

For each value of t , $\{s(t)\}$ is a GPR but $s(t)$ and $s(t')$ are not independent.
 \Rightarrow characterized by $\langle s(t) \rangle$ and $\langle s(t) s(t') \rangle_c$.

Using that $P(q_i^0) \propto e^{-\beta \frac{\omega_i^2}{2} (x-q_i^0)^2}$ & $P(p_i^0) \propto e^{-\beta \frac{\bar{p}_i^2}{2}}$, we can now proceed

$$\langle s(t) \rangle = \sum_j \omega_j \sin(\omega_j t) \underbrace{\langle p_j^0 \rangle}_{=0} + \omega_j^2 \cos(\omega_j t) \underbrace{\langle q_j^0 - x \rangle}_{=0} = 0$$

$$\langle s(t) s(t') \rangle_c = \langle s(t) s(t') \rangle$$

$$= \left\langle \sum_j \left[\omega_j \sin(\omega_j t) p_j^0 + \omega_j^2 \cos(\omega_j t) (q_j^0 - x) \right] \sum_h \left[\omega_h \sin(\omega_h t') p_h^0 + \omega_h^2 \cos(\omega_h t') (q_h^0 - x) \right] \right\rangle$$

$$\Rightarrow \text{There types of terms } \langle p_j^0 p_h^0 \rangle = h\bar{T} \delta_{jh}$$

$$\langle (q_j^0 - x) (q_h^0 - x) \rangle = \frac{h\bar{T}}{\omega_j^2} \delta_{jh}$$

$$\langle p_\alpha^0 (q_\beta^0 - x) \rangle = \langle p_\alpha^0 \rangle \langle q_\beta^0 - x \rangle = 0$$

$$\begin{aligned}
 \langle s(t) s(t') \rangle &= \sum_j \omega_j^2 h\bar{T} \sin(\omega_j t) \sin(\omega_j t') + \omega_j^2 h\bar{T} \cos(\omega_j t) \cos(\omega_j t') \\
 &= h\bar{T} \sum_j \omega_j^2 \cos[\omega_j(t - t')]
 \end{aligned}$$

$$\langle \xi(t) \xi(t') \rangle = kT K(t-t')$$

(8)

This relation is called the **Fluctuation Dissipation Theorem**. It shows how, for the dynamics induced by an equilibrated bath, friction and fluctuation are related to each other by the temperature of the fluid.

Non-Markovian dynamics: $p(s)$ depends on $p(s)$ at earlier times $s \leq t$.

The system has a memory, stored in the degrees of freedom of the fluid. Dynamics like (*) which are not entirely determined at time t by the values of the degrees of freedom considered at time t are called non-Markovian.

On the contrary, (1-*) was Markovian for the full set of d.o.f $\{x, p, \{q_i, p_i\}\}$.

Eliminating $\{q_i, p_i\}$ is nice, but it comes at a price \Rightarrow the memory kernel $K(u)$.

The damping

Let us denote by $g(\omega) \mathrm{d}\omega$ the number of oscillations with $\omega_i \in [\omega, \omega + \mathrm{d}\omega]$.

$$K(u) = \sum_j \omega_j^2 \cos(\omega_j u) \approx \int_0^\infty g(\omega) \omega^2 \cos(\omega u) \mathrm{d}\omega$$

$g(\omega)$ is a property of an "fluid", which determines its memory kernel $K(u)$.

let us choose $g(\omega) = \frac{2\sigma}{\pi\omega^2}$

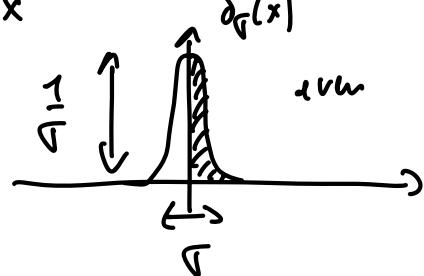
then $K(t) = \frac{2\sigma}{\pi} \int_0^\infty \cos \omega t d\omega = \frac{\sigma}{\pi} \int_0^\infty d\omega (e^{i\omega t} + e^{-i\omega t}) = \frac{\sigma}{\pi} \int_{-\infty}^{+\infty} e^{i\omega t} d\omega$

Since $\hat{\delta}(\omega) = \int_{-\infty}^{+\infty} \delta(t) e^{-i\omega t} dt = 1$; then $\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\omega e^{i\omega t} \hat{\delta}(\omega)$

$$\Rightarrow K(t) = 2\sigma \delta(t)$$

Damping $- \int_0^t \frac{p(s)}{M} 2\sigma \delta(t-s) = ?$

$$\int_{-x}^x ds f(s) \delta(s) = f(0) \quad \text{Then } \int_0^x ds f(s) \delta(s) = ?$$



$$\delta(x) = \lim_{T \rightarrow 0} \delta_T(x)$$

$$\int_0^x ds f(s) \delta(s) = \frac{1}{2} \int_{-x}^x ds f(s) \delta(s) = \frac{f(0)}{2}$$

$$\Rightarrow - \int_0^t \frac{p(s)}{M} 2\sigma \delta(t-s) = - \frac{\sigma}{\pi} p(t)$$

The full dynamics then read

$$\dot{q} = p \quad ; \quad \dot{p} = - \frac{\sigma}{M} p - V'(x) + \zeta(t) \quad (\ast\ast\ast)$$

where $\zeta(t)$ is then a Gaussian white noise:

$$\langle \zeta(t) \rangle = 0$$

$$\langle \zeta(t) \zeta(t') \rangle = 2\sigma h \delta(t-t')$$